It takes about 42 minutes!
For a detailed mathematical explanation read what follows:

13. Newton’s law of gravitation

14. Attraction due to a uniform circular ring at a point on 1its axis

15. Attraction due to a uniform spherical shell

16. Attraction due to a distribution of matter with spherical symmetry
Example

Continuation — with final mathematical result.
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24 CLASSICAL MECHANICS §12

sense, and in the case of elliptic motion about a focus refers
to the length of the semi-major axis. Thus K. 3 reads

n? a

g
where 7;, 7, are the periods of revolution of two planets
about the sun and a;, @, are the lengths of the semi-major
axes of their paths.

Now, with the usual notation, the area of an ellipse is
mab, and 3% is the areal velocity with which the radius vector
sweeps out the area of the ellipse. Consequently, the period
7 is given by 2mab/h. Thus
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Since b2 =a?(l —e?) =al, it follows from the last two displayed
equations that

byt _ b5 / b Ty
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In other words, according to K. 3, the factor p is the same
for all planets in the solar system. We shall see later,
however, that this statement is only approximately true.
Since the force between the sun and a planet is pro-
portional to the mass of the planet, it seems natural to
suppose that it is also proportional to the mass M of the
sun. We conclude, therefore, that this force may be
expressed in the form
Mm
Y
where y is a constant factor depending upon the units of
mass and length employed, M is the mass of tho sun, m
is the mass of the planet and 7 is the distance between the
sun and the planet.

Y
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§ 13. Newton’s law of gravitation. With the aid of
the calculus a lesser man than Newton might have pro-
ceeded thus far, but it required the genius and insight of
Newton to see that the formula just obtained applies to
any two particles in the universe, and to recognise that the

force which holds the planets in their orbits is of the same

character as that which makes the apple fall to the ground.
Newton's law of gravitation asserts that any two particles
in the universe attract one another with o force
My
yt?T 4
where my, my, are the masses of the particles and where 1 s

the distance between, them. 4 is known as the gravitational
constant and has the values

6:66 x 1078 in em. gr. sec. system of units ;
1-05 x 107® in ft. Ib. sec. system of units.

So far we have followed the historical and physical line
of approach. That is to say, we have made the universal
law of gravitation seem plausible by appeals to astronomical
ohservations of the solar system. We prefer, however, to
talke a different viewpoint and simply state the law of gravi-
{ation as an axiom. It will appear that the principal facts
which ean be deduced from this axiom do not conflict with
observational evidence.

§414. Attraction due to a uniform circular ring at a
point on its axis. Let the ring be of line density A, that
i, of mass A per unit length, and let its radius be ¢. We
il enleulate the gravitational attraction on a particle of
Wil mnss situated on the axis of the ring and at distance
i from its centre (fig. 5).

o nitraction due to the mass element Adl is

yAdl

pP4cd’
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The component of this force along the axis is
yApdl
eI

When we integrate round the ring it is evident that, in view
of symmetry, the resultant of the components perpendicular

Fia. 5

to the axis is zero, while the resultant force along the
axis is

2mwoyAp

(pE+cPyle’
or

ML

(p2+02)3.|'2’

where M is the total mass of the ring.

§15. Attraction due to a uniform spherical shell.
Suppose that the shell be of radius @ and of surface density
o, that is, of mass ¢ per unit area. We shall calculate the
attraction on a particle of unit mass which is at distance r
from the centre. To do this, we divide the shell up into
clementary rings of line density aodff and of radius @ sin 6,
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as shown in fig. 6. The centre of such a ring is at distance
7 —a cos O from the particle.

7-@Ccos @ et =)

Fia. 6

The attraction due to this elementary ring is therefore,
according to the result of § 14,

9ma sin O (r —a cos O)yoadd
{(r —a cos 0)2 + (a sin e

Now, if we write
W= (.?- — @ cos 3)2 = (g sin 9)2=r2 — 2ar cos 0§ "rﬂ'va,

then

udw =ar sin 6 df
wil
u?+1% —a®

r—a cos f =
2r

I'lie nitraction due to the elementary ring is therefore
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Now if #>a, » varies from r —a to r +a and the attraction
due to the whole shell is

T+ 2 _ 2
o [ (1 P2 ) i _E‘;g&[u 9

g2 Jr-a

('f2 = a2) r+a

w r—a

where M is the total mass of the shell.

If, however, r<<a, then u varies from a —r to @ +7 and
in this case the resultant force due to the ghell vanishes,
ag the reader can easily verify. Thus the force on a
particle of unit mass due to & uniform spherical shell of
mass M is yM[r® or 0, according as the particle is outside
or inside the shell.

§16. Attraction due to a distribution of matter
with spherical symmetry. Using the results of the
previous section, we see that a particle of unit mass outside
the distribution experiences a force yM/r®, where M is the
total mass of the distribution and r is the distance of the
particle from the centre of the distribution. In such a case
the particle is acted upon by the same force as it would be
if the whole mass of the distribution were concentrated at
its centre. This means that the formula ymymg[1? applies
not only to two particles but also to any two spherical
distributions of matter whose boundaries do not intersect,
provided that r is understood to signify the distance between
the centres of the distributions.

On the otber hand, if the particle of unit mass is within
the spherical distribution it will experience a force yM'[r?,
where M’ is the total mass contained within the sphere of
radius r, for, as we have seen in the previous section, any
clementary shell which includes the particle exerts no force
onit. If the distribution be a uniform sphere of radius a,
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tht?n M’ = (r3/a®) M and the force exerted on the particle of
unit mass at distance r(<<a) from its centre is

Mr 4 -
Vas.. e (5

§17. Weight. From the foregoing arguments we see
f,hat, if the earth be assumed to have spherical symmetry,
its gravitational attraction on a particle of mass m outside
the earth is

vMm

e

H

where M is the mass of the earth and where r is the dis-
tance of the particle from the earth’s centre. Thiy force is
called the weight of the particle and is written

mg
where ,

M
=

Now in any locality where an experiment is being per-
formed the value of 7 is approximately constant and so in
such cases ¢ may be regarded as a constant. For different
places on the earth’s surface or at greatly differing altitudes,
r may vary slightly and the value of g varies correspondingly.
[{s value at sea level for different places is given by the
[ollowing table :

f.p.s. units

| c.g.s. units
Bquator . 978-10 32.08
Now York . 980-22 3216 |
London F 981:19 32:19
North Pole . i 983-21 3225

Hinoe tho weight of a mass m is mg, it follows that the
sevelorntion of this mass when falling freely is g. At a given
gl thin neceleration is the same for all bodies irrespective




Hwample.  As another illustration of simple harmonic motion
wo nhall prove the remarkable but useless fact that if a straight
winnolh tunnol were bored through the earth, a particle released
froin vesh ot the earth’s surface would slide through it in about
1 ninnbos, nssuming that the density of the earth is uniform.
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In fig, 10 lot AB be the tunnel and let O be its mid-point.
According to (16.1), when the particle is at P it is subject to
a gravitational attraction yMmr/a® towards the centre of the
earth. The component of the resulting acceleration in the
divection 0X is - yMa/a®, where x =OP and a is the radius of
the earth. 'The equation of motion is therefore of the form

&= —-n'z,
where
:n,z = ZM :g_
a®  a

The poriod of the motion is therefore 2m4/(a/g) and the time
for the particle to slide from one end of the tunnel to the other

A

Fie. 10

is half of this value. Takingg =981 cms./sec.? and @ = 6370 kms.
as approximate values, we have

637000000
r=m, /- 981 8€Cs.,

which is just over 42 minutes.

§32. Damped oscillator with a periodic applied
force. The equation
#+kd+nte=fcospt,. . . (32.1)

which we now discuss, is of interest not only in mechanics
but also in the theory of alternating electric currents. In
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the mechanical case it arises when a particle of mass m
constrained to move along the w-axis is subject to three
forces: (i) an elastic force —mn®z, (ii) a resistance —mk2
proportional to the velocity, (iil) a periodic applied force
mf cos pt of period 27fp. When we have found the general
solution of the equation (32.1) we may consider the special
case in which the resistance is absent (£=0), or the case in
which the applied force is absent (f=0).
The solution of the equation (32.1) is, assuming k<2n,

@ =ae~¥ cos (gt +¢)+ (f/R) cos (pt—a), . (32.2)

where @ and ¢ are constants of integration, ¢=n?— Lk?
and R and o are given by the right-angled triangle of fig. 11.

pk

n'l _p2
Fia. 11

I'his solution may be obtained by the standard method of
denling with such differential equations,® but the reader
unfamiliar with this theory may satisfy himself by differen-
[inlion that the solution does, in fact, satisfy (32.1) and
olbierve that sinece two constants e, € of integration oceur,
(ho solution (32.2) is the most general one.

[n the eolution (32.2) the first term ae~i¥ cos (gt +¢)
Iu roferred to as the free term since it occurs whether
o nol the applied force is present. The second term
(/') con (pt —~a) is called the forced term and it evidently
liun the sume period 2m/p as the applied force, although it

Y dnee, Integration of Ordinary Differential Equations, p. 97.




